Résultat de la recherche
1 recherche sur le mot-clé 'Spatial modeling'
Ajouter le résultat dans votre panier Affiner la recherche Générer le flux rss de la recherche
Partager le résultat de cette recherche Interroger des sources externes
Hierarchical modelling for the environmental sciences: statistical methods and applications / Clark, J.S.(Ed.) ; Gelfand, A.E.(Ed.) (2006)
Titre : Hierarchical modelling for the environmental sciences: statistical methods and applications Type de document : livre Auteurs : Clark, J.S.(Ed.) ; Gelfand, A.E.(Ed.) Mention d'édition : 1st ed. Editeur : Oxford, UK : Oxford University Press Année de publication : 2006 Importance : 205 p. ISBN/ISSN/EAN : 978-0-19-856967-1 Langues : Anglais (eng) Mots-clés : Environmental modelling Hierarchical model Spatial modeling Statistical methods Résumé : New Statistical tools are changing the wau in which scientists analyze and interpret data and models. Many of these are emerging as a result of the wide availability of inexpensive, high speed computational power. In particular, hierarchical Bayes and Markov Chain Monte Carlo methods for analysis provide constant framework for inference and prediction where information is heterogeneous and uncertain, processes are complex, and responses depend on scale. Nowhere are these methods more promising than in the environmental sciences. Models have developed rapidly, and there is now a requirment for a clear exposition of the methodology through to application for a range of environmental challenges. [Résumé éditeur] Hierarchical modelling for the environmental sciences: statistical methods and applications [livre] / Clark, J.S.(Ed.) ; Gelfand, A.E.(Ed.) . - 1st ed. . - Oxford, UK : Oxford University Press, 2006 . - 205 p.
ISBN : 978-0-19-856967-1
Langues : Anglais (eng)
Mots-clés : Environmental modelling Hierarchical model Spatial modeling Statistical methods Résumé : New Statistical tools are changing the wau in which scientists analyze and interpret data and models. Many of these are emerging as a result of the wide availability of inexpensive, high speed computational power. In particular, hierarchical Bayes and Markov Chain Monte Carlo methods for analysis provide constant framework for inference and prediction where information is heterogeneous and uncertain, processes are complex, and responses depend on scale. Nowhere are these methods more promising than in the environmental sciences. Models have developed rapidly, and there is now a requirment for a clear exposition of the methodology through to application for a range of environmental challenges. [Résumé éditeur] Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 68158 CLA_11_68158 Livre Salle des ouvrages 11_Mathématiques Sorti jusqu'au 25/05/2043