Détail d'une collection
|
Documents disponibles dans la collection (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Permutation tests. A practical guide to resampling methods for testing hypotheses / GOOD, P. (1994)
Titre : Permutation tests. A practical guide to resampling methods for testing hypotheses Type de document : livre Auteurs : GOOD, P. Editeur : Springer Année de publication : 1994 Collection : Springer Series in Statistics Importance : 228 p. ISBN/ISSN/EAN : IF55000 Note générale : Inventaire 2007: Pointé en rayon Mots-clés : Analyse multivariable Distribution Echantillonnage Guide Informatique Statistique TEST Permutation tests. A practical guide to resampling methods for testing hypotheses [livre] / GOOD, P. . - Springer, 1994 . - 228 p.. - (Springer Series in Statistics) .
ISSN : IF55000
Inventaire 2007: Pointé en rayon
Mots-clés : Analyse multivariable Distribution Echantillonnage Guide Informatique Statistique TEST Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 55000 GOO_11_55000 Livre Salle des ouvrages 11_Mathématiques Disponible
Titre : Goodness-of-fit statistics for discrete multivariate data Type de document : livre Auteurs : T. R. Read, Auteur ; N. A. Cressie, Auteur Editeur : Springer Année de publication : 1988 Collection : Springer Series in Statistics Importance : 211 p. ISBN/ISSN/EAN : IF43857 Langues : Anglais (eng) Mots-clés : Analyse multivariable Modèle Statistique Résumé : Le site éditeur indique : The statistical analysis of discrete multivariate data has received a great deal of attention in the statistics literature over the past two decades. The develop ment ofappropriate models is the common theme of books such as Cox (1970), Haberman (1974, 1978, 1979), Bishop et al. (1975), Gokhale and Kullback (1978), Upton (1978), Fienberg (1980), Plackett (1981), Agresti (1984), Goodman (1984), and Freeman (1987). The objective of our book differs from those listed above. Rather than concentrating on model building, our intention is to describe and assess the goodness-of-fit statistics used in the model verification part of the inference process. Those books that emphasize model development tend to assume that the model can be tested with one of the traditional goodness-of-fit tests 2 2 (e.g., Pearson's X or the loglikelihood ratio G ) using a chi-squared critical value. However, it is well known that this can give a poor approximation in many circumstances. This book provides the reader with a unified analysis of the traditional goodness-of-fit tests, describing their behavior and relative merits as well as introducing some new test statistics. The power-divergence family of statistics (Cressie and Read, 1984) is used to link the traditional test statistics through a single real-valued parameter, and provides a way to consolidate and extend the current fragmented literature. As a by-product of our analysis, a new 2 2 statistic emerges "between" Pearson's X and the loglikelihood ratio G that has some valuable properties. En ligne : https://link.springer.com/book/10.1007/978-1-4612-4578-0 Format de la ressource électronique : Goodness-of-fit statistics for discrete multivariate data [livre] / T. R. Read, Auteur ; N. A. Cressie, Auteur . - Springer, 1988 . - 211 p.. - (Springer Series in Statistics) .
ISSN : IF43857
Langues : Anglais (eng)
Mots-clés : Analyse multivariable Modèle Statistique Résumé : Le site éditeur indique : The statistical analysis of discrete multivariate data has received a great deal of attention in the statistics literature over the past two decades. The develop ment ofappropriate models is the common theme of books such as Cox (1970), Haberman (1974, 1978, 1979), Bishop et al. (1975), Gokhale and Kullback (1978), Upton (1978), Fienberg (1980), Plackett (1981), Agresti (1984), Goodman (1984), and Freeman (1987). The objective of our book differs from those listed above. Rather than concentrating on model building, our intention is to describe and assess the goodness-of-fit statistics used in the model verification part of the inference process. Those books that emphasize model development tend to assume that the model can be tested with one of the traditional goodness-of-fit tests 2 2 (e.g., Pearson's X or the loglikelihood ratio G ) using a chi-squared critical value. However, it is well known that this can give a poor approximation in many circumstances. This book provides the reader with a unified analysis of the traditional goodness-of-fit tests, describing their behavior and relative merits as well as introducing some new test statistics. The power-divergence family of statistics (Cressie and Read, 1984) is used to link the traditional test statistics through a single real-valued parameter, and provides a way to consolidate and extend the current fragmented literature. As a by-product of our analysis, a new 2 2 statistic emerges "between" Pearson's X and the loglikelihood ratio G that has some valuable properties. En ligne : https://link.springer.com/book/10.1007/978-1-4612-4578-0 Format de la ressource électronique : Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 43857 REA_11_43857 Livre Salle des ouvrages 11_Mathématiques Sorti jusqu'au 25/05/2043