Détail de l'auteur
Auteur Brian D. Marx |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : Practical smoothing: the joys of P-splines Type de document : livre Auteurs : Paul H. C. Eilers, Auteur ; Brian D. Marx, Auteur Mention d'édition : 1st ed. Editeur : Cambridge, UK : Cambridge University Press Année de publication : 2021 Importance : 199 p. ISBN/ISSN/EAN : 978-1-108-48295-0 Prix : 46.99 GBP Note générale : DOI:10.10117/9781108610247; Companion site (Here you find the R code for all graphs in the book, pictures of those graphs, as well as supporting functions, data sets and documents) : https://psplines.bitbucket.io/ Langues : Anglais (eng) Mots-clés : Statistical methods Résumé : Le site éditeur indique : This is a practical guide to P-splines, a simple, flexible and powerful tool for smoothing. P-splines combine regression on B-splines with simple, discrete, roughness penalties. They were introduced by the authors in 1996 and have been used in many diverse applications. The regression basis makes it straightforward to handle non-normal data, like in generalized linear models. The authors demonstrate optimal smoothing, using mixed model technology and Bayesian estimation, in addition to classical tools like cross-validation and AIC, covering theory and applications with code in R. Going far beyond simple smoothing, they also show how to use P-splines for regression on signals, varying-coefficient models, quantile and expectile smoothing, and composite links for grouped data. Penalties are the crucial elements of P-splines; with proper modifications they can handle periodic and circular data as well as shape constraints. Combining penalties with tensor products of B-splines extends these attractive properties to multiple dimensions. An appendix offers a systematic comparison to other smoothers. En ligne : https://www.cambridge.org/nl/academic/subjects/statistics-probability/computatio [...] Practical smoothing: the joys of P-splines [livre] / Paul H. C. Eilers, Auteur ; Brian D. Marx, Auteur . - 1st ed. . - Cambridge, UK : Cambridge University Press, 2021 . - 199 p.
ISBN : 978-1-108-48295-0 : 46.99 GBP
DOI:10.10117/9781108610247; Companion site (Here you find the R code for all graphs in the book, pictures of those graphs, as well as supporting functions, data sets and documents) : https://psplines.bitbucket.io/
Langues : Anglais (eng)
Mots-clés : Statistical methods Résumé : Le site éditeur indique : This is a practical guide to P-splines, a simple, flexible and powerful tool for smoothing. P-splines combine regression on B-splines with simple, discrete, roughness penalties. They were introduced by the authors in 1996 and have been used in many diverse applications. The regression basis makes it straightforward to handle non-normal data, like in generalized linear models. The authors demonstrate optimal smoothing, using mixed model technology and Bayesian estimation, in addition to classical tools like cross-validation and AIC, covering theory and applications with code in R. Going far beyond simple smoothing, they also show how to use P-splines for regression on signals, varying-coefficient models, quantile and expectile smoothing, and composite links for grouped data. Penalties are the crucial elements of P-splines; with proper modifications they can handle periodic and circular data as well as shape constraints. Combining penalties with tensor products of B-splines extends these attractive properties to multiple dimensions. An appendix offers a systematic comparison to other smoothers. En ligne : https://www.cambridge.org/nl/academic/subjects/statistics-probability/computatio [...] Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 69832 EIL_11_69832 Livre Salle des ouvrages 11_Mathématiques Sorti jusqu'au 25/05/2043